86% of organisations prioritise AI and Machine Learning

DataRobot, the AI Cloud leader, has released a new research report on the state of artificial intelligence and machine learning (AI/ML) in the enterprise. The report findings are based on a deep exploration of over 400 organisations across industries, revealing critical insights into the common hurdles facing these organisations and the ways AI is unlocking economic growth.

  • 3 years ago Posted in

Key findings include:

Maturing Market: Investment in AI/ML is continuing to rise, with 86% of survey respondents saying their organisations have increased their yearly AI/ML budget from 2020 to 2021. The same percentage (86) said their organisations prioritise AI/ML above other IT initiatives, with 42% placing AI/ML as their leading IT priority.

Operational Issues Delay ROI: The research found that organisations are running into increasingly complex post-deployment operational issues, with 87% of survey respondents struggling with long model deployment timelines. The majority, 59% of surveyed organisations, require at least one month to deploy a trained model to production.

Infrastructure Complexity: Every enterprise has a growing, diverse and often disconnected combination of infrastructure, tooling and specific use cases and requirements for AI/ML. The majority of surveyed organisations (64%) deploy models and data to support more than 10 regions across the globe, while 22% need to support more than 20 regions worldwide. Additionally, 37% of respondents have AI deployed across a hybrid environment for model deployment, combining on-premises infrastructure with cloud environments, while 28% have a multi-cloud environment.

Performance, Compliance and Security Implications: 85% of respondents are struggling with IT governance, compliance and auditability requirements related to their AI/ML deployments, and 25%—the largest percentage for any single challenge—named IT security their top AI/ML challenge. Most companies (83%) said they have SLA requirements for model latency and significant geographic distribution can present performance challenges.

“AI is enabling the most competitive companies to revolutionise their business operations and disrupt decades-old industries,” said Executive Vice President of MLOps at DataRobot, Diego Oppenheimer. “However, organisations are running into more complex operational concerns: corporate governance, IT security, risk management and multinational regulation. An end-to-end AI/ML platform with enterprise-grade machine learning operations is the only way to manage this growing complexity and maximise business impact.”


Whilst overall AI patent filings have slowed, green AI patent publications grew 35% in 2023.
Manages security for both users and providers of AI services, overseeing authentication and zero...
Cybersecurity job satisfaction declines amid tightening job market, ongoing staffing and skills...
Now Platform unites ASDA’s operations across Technology, Customer, Finance, and Employee...
A unique, new programme designed to provide athletes with the resources and support needed to...
On average, only 48% of digital initiatives meet or exceed business outcome targets, according to...
To accelerate enterprises’ readiness to further connect and support AI and non-AI workloads,...
Gartner, Inc. predicts that through 2027, Fortune 500 companies will shift $500 billion from energy...